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1. INTRODUCTION

Analysis of a set of evolutionary or nonstationary time

series data is traditionally carried out by the use of regression

and spectral methods. Although these procedures are, to some ex-

tent, nonparametric in nature, the basic assumption implicit in

such data analysis has usually been that the time series is

Gaussian or nearly so. We do not know very well how efficient

and useful these procedures are in case the data structure is dis-

tinctly non-Gaussian.

Classical data analysts who handle data sets composed of in-

dependent observations have noticed over the last three decades

that robust and adaptive nonparametric methods have worked very

efficiently even for situations where large implicit variability

in the data has effectively ruled out a Gaussian model. In recent

years several concerted attempts have been made to adapt" hese

nonparametric methods to the area of time series analysis with

some success (for a partial listing see Kassam and Thomas (13]

and Basawa and Prakasa Rao [1]).

The present Technical Report (along with the previous one

communicated under AFOSR Contract # F 49620-79-C0194) is based on

work done as an attempt to extend these methods of nonparametric

statistics to selected areas of time series analysis.

2. MAIN PROBLEM

We have assumed throughout that we are dealing with a disrte

time series {Xt,tEJ} where J is the set of integers and that the

given data set co 6 Igft *Ap <_ n). In
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general {X t is nonstationary. But since nonstationarity in a ran-

dom process can take infinitely varied forms, it seems reasonable

to impose some restrictive conditions on such nonstationarity. We

have accordingly assumed that

Xt = St + Wt , tEJ, (1)

where {S t is a 'signal' process which may be nonrandom and par-

tially known or may itself be random and {W t } is stationary or a

slowly evolving process. In the past, models of the type (1) have

been investigated through standard regression and spectral analysis,

but usually under the implicit assumption of a Gaussian model.

Some recent attempts have been made to avoid this assumption and

work within the framework of nonparametric methods which have

proved useful and efficient for data analyses involving independ-

ent observations. One may mention in this context the works of

Basawa and Prakasa Rao [1], Davisson, Feustal and Modestino [9],

Gastwirth and Rubin [103 , Grossmanfll], Kanefsky and Thomas [12],

Kassam and Thomas [13], Koul [14] and Wolff, Gastwirth and Rubin

[16] among others. In order to take advantage of the power of the

standard nonparametric methods, and at the same time recognize the

interdependence of the series of observations it may be reasonable

to use a model which directly describes the probabilistic structure

of the process instead of depicting its second order (spectral)

properties. The advantage of using a somewhat explicit but gen-

eral probabilistic model (which, in particular, may be Gaussian)

is quite clear - we may be able to handle the data analysis in a

comparatively more precise quantitative manner and at the same

time assure ourselves that these tools have adequate robustness



4

properties.

To this end we introduce the following probability model for

{Wt }  We assume that {Wt } is a linear process in the sense that

Wt I gr Ztr(2)
r=0 (2)

where {Z t} is a pure white noise process and the infinite sum on

the right hand side of (2) converges in some probabilistic sense.

Observe that the classical mixture of the autoregressive moving

average (ARMA) processes are special cases of (2). If we specify

the distribution function (DF) F0 of Z1 we provide a complete

probabilistic description of {W }. If F0 is Gaussian {Wt} is

Gaussian. If F0 is heavy-tailed, {W t} is very definitely non-

Gaussian. Properties of such linear processes have been investi-

gated in a series of articles (see Chanda [2],[3],[4],[5]).

3. METHODS OF INVESTIGATION

We have addressed ourselves mainly to the development of non-

parametric tools of inference relating to a nonrandom signal {S t}
mixed with noise {Wt } resulting in the time series model (1). We

have assumed that

p
St = . aj t CJ, (3)

where aj (1 < j < p) are unknown parameters and atj (1 < j < p)

are known constants. Then instead of using the conventional least

squares estimates of aj and hence of St we may use some other more

efficient methods based on the likelihood function. This will

entail adaptive estimation of a. through estimation of the
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probability density function (PDF) fo of Z1 or of the PDF f of W l -

We also consider the possibility of using sample quantiles for

estimating St, and determine goodness-of-fit tests for identifying

the distribution of {X t}.

4. DESCRIPTION OF WORK COMPLETED

During the period July, 1979 - September, 1980 we have de-

veloped some simple analytic tools to handle the problems of in-

ference relating to the model (1). These consist of several non-

parametric statistics of which the sampling properties have been

investigated in some details. We describe thse details in the

sections 4.a and 4.b.

4.a. Chi-square Goodness-of-Fit Tests

We have assumed that St = 0 so that Xt = Wt in (1). The DF

F of X1 will then involve unknown parameters in gr (r > 1, go 
= 1)

and the DF F0 of Z1. In order to test simple and composite hy-

potheses about F we have considered the standard chi-square good-

ness-of-fit tests based on X. (1 < j < n). Asymptotic sampling

properties of these tests are then investigated under these null

hypotheses. We conclude that these properties are largely deter-

mined by the multivariate probability structure of {X t } in (1).

The results are given in Chanda [6] (a reprint of this article

is enclosed with this Report).

4.b. Sampling Prperties of a Class of Statistics

The class of statistics considered in 4.a. is somewhat gen-

eralized, although we continue to assume as in 4.a. that Xt = Wt.

We define the vector process {Yt} where Yt = h (Xt,.',Xt+s-l)
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for some s-> 1 and h is a real vector function on Rs. The Central

Limit Theorem and the Strong Laws of Large Numbers are then estab-
lished for {Y t. These results are then used to establish asymp-

totic normality and consistency properties of a large class of

statistics which provide parametric and nonparametric estimates

for a class of signals mixed with noise described in model (1).

The results have already been communicated in the Final Technical

Report for AFOSR Contract #F - 49620-79-C-0194.

During the final phase of our investigation for the period

December 1980 - September 1981 (under AFOSR Grant #81-0058) we

have developed additional tools of inference for model (1) with

St = 0. We have investigated the asymptotic sampling properties

for a class of sample quantiles and considered the possibility

of consistently estimating the PDF f of XI. The details are

described below in section 4.c. and 4.d.

4.c. Sampling Properties for a Class of Sample Quantiles

Let {Xt} be defined as in (1) with St = 0. In the past such

a location parameter has been estimated reasonably well by quantiles

Qn computed from the sample. Conventionally Qn = Xkn:n ,where

X. < .... < Xn  are the order statistics for the sample withitn- ""- n:n

k n/n - p as n - - where 0 < p < 1. It is, however, interesting

to find out what happens to Qn when kn/n -+ 0 or 1, as n - -.

We have investigated the sampling properties of such a Qn for the

special case when Xt = 0 + zt. It is established that for various

choices of n, an , and kn (in particular when kn/n -o 0 or 1 as

n -o - and under some regularity conditions (Yn) -) (0,i) as n

where Yn = (Qn + an)/n (an > 0). Under some additional conditions

7 IIII II II I I II |' * .. n , , .- ± _.
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standard asymptotic expansion (in Edgeworth form) for the distri-

bution of Y is derived. The results are given in Chanda [7] (an

copy of the manuscript is enclosed with this Report).

4.d Estimation of the Density Function

Let {X t } be defined by (1) with St = 0. As we have mentioned

earlier we may estimate the location parameter adaptively by using

some kind of likelihood function approach (see Stone [15]). This

can be accomplished by using estimates of the PDF f0 or f. Since,

in general, it is difficult to set up the likelihood function of

X1I1. .. Xn in terms of f0 we have attempted to use estimates of f

instead. We have employed the conventional kernel-type density

estimators and established that these statistics are strongly con-

sistent and asymptotically normal. The results are given in Chanda

[8] (a copy of the manuscript is enclosed with this article).
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